The Technologies
Friction stir (FS) technologies are a family of “green” processing and joining technologies that involve local mechanical stirring of metallic workpieces or sets of metallic workpieces with specially designed interchangeable, non-consumable tool bits referred to here as Stirbits®. The purpose of the FS process includes: 1) to locally modify (refine and consolidate) the microstructure of the metal within a given workpiece, and/or 2) to permanently join a set of workpieces. The basic process is carried out in the solid state and involves forcing a spinning, non-consumable tool into the workpiece(s) and then along a prescribed path, e.g. along the joint line between two or more components to be joined. Because the processed material remains solid (not becoming liquid) throughout the process cycle, FS tools experience frictional wear with use and are, therefore, periodically replaced in production operations to maintain the prescribed tool geometry.
A supporting technology, referred to here as e-NDE Elements™, is used to evaluate the effectiveness and applicability of a given FS technology for a given application. To learn more about this technology, select e-NDE Elements™.
Discrete, circumscribed FSW joints are treated as integral fasteners. To learn more about this technology, select Swept Spot Integral Fasteners.
Background
“Friction stir butt welding” was first introduced by The Welding Institute (TWI) of Cambridge, UK, in 1991 as a permanent butt joining process for metals and a limited number of plastics. [1] The process soon became known as “friction stir welding” (FSW) [2] as the use of the technology was expanded to include lap joints, corner joints, combined butt and lap (hybrid) joints, fillet joints, etc., in addition to butt joints. [3]
Variants
Variants of FSW have been introduced since the initial disclosure of FSW. These include multiple forms of friction stir spot welding (FSSW) [4] and friction stir processing (FSP). [5] Other variants include friction stir additive manufacturing. FSW and the related technologies, FSSW and FSP, may be referred to collectively as friction stir (FS) technologies. Each of these technologies is intended to be carried out below the solidus temperature of the workpiece(s) and is thus considered a local solid-state fabrication process having aspects similar to other forms of wrought metal working processes such as forging and extruding.
Periodic Tendency
The following is a qualitative description of the periodic nature of friction stir technologies. The text is from a paper presented by Dr. Burford at the 9th International Friction Stir Welding Symposium held at The Von Braun Center in Huntsville, AL from 15-17 May 2012. It is an expanded version of a portion of the discussion included in a paper given earlier at the 6th Annual Technical Review Meeting of the FAA Joint Advanced Materials & Structures (JAMS) Center of Excellence held during May 19–20, 2010.
In FSW, the side of the weld tool probe is pressed against the workpiece in a manner similar to that of machining with the side of an end mill. However, unlike end mill machining, in FSW the tool design and process parameters are selected such that the displaced material is captured, reconstituted, and joined back to the original material – as opposed to removing it from the work zone in the form of “chips” as is done in machining. Consequently, there are both similarities as well as dramatic differences in the dynamic response of the respective tools used in end milling and FSW, respectively.
In machining, it is important to clear the cut metal (chips) from the tool at a sufficient rate to prevent clogging of tool features, namely the flutes, etc. In FSW the opposite is true. The features of a FSW tool, such as threads, grooves, etc., are expected to become impacted with metal and thereby maintain a full frontal engagement between the tool and the material of the workpiece. In machining, only the tool cutting edges are expected to be in contact with the material ahead of the cutting front. This full engagement between the FSW tool and workpiece leads to unique dynamic behavior not typically experienced in machining. Notwithstanding the differences in tool engagement with the workpiece, however, the two processes share similar behaviors because of the similarities in which the tools are dynamically loaded (i.e. by side loading caused by advancing a rotating tool through the workpiece).
Advanced control techniques in machining have been investigated for reducing chatter. For example, Zhang and Sims [6] assessed the ability of “piezoelectric active vibration damping” to arrest chaotic tool behavior. To reduce defect formation in FSW associated with chaotic tool motion, Arbegast, [7] Boldsaikhan et al., [8] and Jene et al. [9] have studied machine tool-workpiece interactions by monitoring force feedback signals. As these studies demonstrate, in both machining and FSW, process monitoring can serve as the basis for reducing chaotic tool behavior and, thereby, provides a means for improving part quality in FSW as it has in machining.
In FSW and under particular conditions, the tool tends to oscillate side-to-side (nominally transverse to applied loading vector) while under the local dynamic side loading conditions imposed on the tool at the tool-workpiece interface. [10] In machining, when the tool oscillates in a chaotic manner, a self-excited vibration phenomenon called “chatter” tends to form, leaving erratic markings on the newly cut surface. Similar chaotic oscillations in FSW tend to be associated with the formation of volumetric defects (voids) within the joint, resulting from the lack of consistency in the reconsolidation of material along the joint line. [11]
The advancing, rotating FSW tool presses against the material directly ahead of it, creating a shearing action that extends around the tool front. In a generalized manner, when the material directly in front of the tool is sufficiently heated under the pressure and shearing action imposed on it by the advancing, rotating FSW tool, thin layers of material are transported from the advancing side of the tool to the retreating side of the tool. This action is repeated as the material ahead of the tool is again heated and pressed against sufficiently to cause it to shear and be transported along the front of the advancing tool. Each time material is transported across the face of the tool, cooler material is again exposed to the leading face of the tool.
This sequence of events leads to a repeating process of heating and shearing followed by heating and shearing (heat – shear – heat – shear …). The new interface ahead of the tool is again pressed upon until it is sufficiently heated to move the next band of material along the tool front from the advancing side to the retreating side. This undulation in metal movement along the leading edge of the tool promotes an oscillatory or alternating pattern in both normal and shear forces acting on the tool surface, which in turn causes the tool to move in a periodic or oscillatory motion, nominally side-to-side, as the tool is advanced. This process is schematically depicted in Figure 1.

Figure 1: Schematic swept volume cross-section of a generic FSW tool probe located midway below the tool shoulder and the end of the probe. [10]
Specifications
Aluminum Applications
- AWS D17.3: Specification for Friction Stir Welding of Aluminum Alloys for Aerospace Applications
- ISO 25239 (2011): Friction stir welding — Aluminium
- ISO 18785: Friction stir spot welding — Aluminium
Selected Bibliography
Books & Conference Proceedings
- TWI International Symposium on Friction Stir Welding
- Next Venue & Sessions
- 13th, Kyoto, Japan, 26-28 May 2020
- Past Venues & Sessions
- 1st, Rockwell Science Center, California, 14-16 June 1999
- 2nd, Gothenburg, Sweden, 27-29 June 2000
- 3rd, Kobe, Japan, 27-28 September 2001
- 4th, Park City, Utah, 14-16 May 2003
- 5th, Metz, France, 14-16 September 2004
- 6th, Saint-Sauveur, Quebec, Canada, 10-13 October 2006
- 7th, Awaji Island, Japan, 20-22 May 2008
- 8th, Lübeck, Germany, 18th-20th May 2010
- 9th, Huntsville, Alabama, 15th-17th May 2012
- 10th, Beijing, China, 20th-22nd May 2014
- 11th, Cambridge, UK, 17-19 May 2016
- 12th, Chicoutimi, Quebec, Canada, 26-28 June 2018
- Proceedings Archive
- Next Venue & Sessions
- ASM International
- Springer
- TMS FSW&P Symposium
- Friction Stir Welding & Processing (2001)
- Friction Stir Welding & Processing II (2003)
- Friction Stir Welding & Processing III (2005)
- Friction Stir Welding & Processing IV (2007)
- Friction Stir Welding & Processing V (2009)
- Friction Stir Welding & Processing VI (2011)
- Friction Stir Welding & Processing VII (2013)
- Friction Stir Welding & Processing VIII (2015)
- Friction Stir Welding & Processing IX (2017)
- Friction Stir Welding & Processing X (2019)
- Featured Paper: “Developing and Deploying FSW&P through Standardization,” by Dwight Burford
- Woodhead Publishing (Elsevier)
Review Articles
- Friction stir welding and processing (2005)
- Friction Stir Processing Technology: A Review (2008)
- Friction stir welding of aluminium alloys (2009)
- A Review of FSW Research on Dissimilar Metal and Alloy Systems (2010)
- Review: friction stir welding tools (2011)
- A review of numerical analysis of friction stir welding (2014)
- A review of friction stir welding of aluminium matrix composites (2015)
- Surface composites by friction stir processing: A review (2015)
Project Reports